Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Environ Int ; 157: 106821, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1491996

RESUMEN

The surveillance of wastewater for the Covid-19 virus during this unprecedented pandemic and mapped to the distribution and magnitude of the infected in the population near real-time exemplifies the importance of tracking rapidly changing trends of pathogens or public health problems at a large scale. The rising trends of antimicrobial resistance (AMR) with multidrug-resistant pathogens from the environmental water have similarly gained much attention in recent years. Wastewater-based epidemiology from water samples has shown that a wide range of AMR-related genes is frequently detected. Albeit sewage is treated before release and thus, the abundance of pathogens should be significantly reduced or even pathogen-free, several studies indicated the contrary. Pathogens are still measurable in the released water, ultimately entering freshwaters, such as rivers and lakes. Furthermore, socio-economic and environmental factors, such as chemical industries and animal farming nearby, impact the presence of AMR. Many bacterial species from the environment are intrinsically resistant and also contribute to the resistome of freshwater lakes. This study collected the most extensive standardized freshwater data set from hundreds of European lakes and conducted a comprehensive multi-omics analysis on antimicrobial resistance from these freshwater lakes. Our research shows that genes encoding for AMR against tetracyclines, cephalosporins, and quinolones were commonly identified, while for some, such as sulfonamides, resistance was less frequently present. We provide an estimation of the characteristic resistance of AMR in European lakes, which can be used as a comprehensive resistome dataset to facilitate and monitor temporal changes in the development of AMR in European freshwater lakes.


Asunto(s)
Antibacterianos , COVID-19 , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Humanos , Lagos , SARS-CoV-2
2.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1343629

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Asunto(s)
COVID-19/prevención & control , Biología Computacional , SARS-CoV-2/aislamiento & purificación , Investigación Biomédica , COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
3.
iScience ; 23(7): 101297, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: covidwho-609712

RESUMEN

Since the outbreak in 2019, researchers are trying to find effective drugs against the SARS-CoV-2 virus based on de novo drug design and drug repurposing. The former approach is very time consuming and needs extensive testing in humans, whereas drug repurposing is more promising, as the drugs have already been tested for side effects, etc. At present, there is no treatment for COVID-19 that is clinically effective, but there is a huge amount of data from studies that analyze potential drugs. We developed CORDITE to efficiently combine state-of-the-art knowledge on potential drugs and make it accessible to scientists and clinicians. The web interface also provides access to an easy-to-use API that allows a wide use for other software and applications, e.g., for meta-analysis, design of new clinical studies, or simple literature search. CORDITE is currently empowering many scientists across all continents and accelerates research in the knowledge domains of virology and drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA